Advanced MR Imaging for Lung Diseases

Jason C. Woods

Center for Pulmonary Imaging Research

Lung is most challenging solid organ to image

- 1. Large and moves with respiration (motion artifacts)
- 2. Low density ($\rho = 0.2 \text{ g/cm}^3 \text{ at TLC}$)
- 3. Multiple air-tissue interfaces (alveoli) cause fast MRI decay of signal

X-ray (not tomographic)

X-ray CT (fairly high ionizing radiation)

MRI (no radiation, but historically bad for parenchyma)

neonate

Challenges have caused innovation

1. UTE MRI sequences (echo time < 0.2 ms) Early CF Lung disease Neonates in NICU (with "self"-respiratory gating)

2. A scaled-down, neonatal MRI scanner 1.5T ONI / GE hybrid

3. Hyperpolarized-gas MRI (³He or ¹²⁹Xe) Realtime ventilation (breath hold for 10-15 s) Measure of alveolar-airspace size Measures of gas exchange

Density quantification via MRI is now possible (validation by CT)

NS Higano, et al., *J Magn Reson Imag* 2017 (in press) doi 10.1002/jmri.25643 JM Stein, et al., *Pediatric Radiology* 2016; 46: 1804

Can UTE MRI quantify abnormalities like CT?: 1-3 y.o.

- Score both MRI and CT via Brody Score
- Lung Abnormalities
 - Bronchiectasis (BR)
 - Ground glass opacity (GGO)
 - Bronchial wall thickening (BWT)
 - Mucus Plugging (MP)
 - Consolidation (Con)
 - Air trapping (AT)

Techniques with hyperpolarized ¹²⁹Xe

¹²⁹Xe ventilation MRI: Detection of early obstruction

14 y.o. male control subject, $FEV_1 = 103\%$ (normal lung function)

All control subjects: uniform ¹²⁹Xe ventilation and low ¹²⁹Xe ventilation defect percentage (VDP)

15 y.o. female CF subject, $FEV_1 = 73\%$

CF: ¹²⁹Xe Ventilation Defect Percentage (VDP) in CF

Control FEV₁ = 115%

CFEV₁ = 81%

CF FEV₁ = 102% Much more sensitive than FEV1 Provides spatial heterogentiy complementary to time-heterogeneity with LCI

RL Thomen et al, J Cyst Fibrosis 2016 Jul 28. Kanhere et al., Am J Respir Crit Care Med 2017, 28 Feb

Combining structure and function

UTE MRI Hyperpolarized Xenon MRI function LU LL RU RM RL

structure

Use for chILDs

A post-infectious BOS case...

UTE MRI

¹²⁹Xe ventilation MRI

Threshold & quantify ventilation deficits (blue)

¹²⁹Xe VDP = 40.7%

IRC186H-**38**: 12 y.o. male BOS patient (post-infectious) FEV₁%-pred = 34%

A milder BOS case...(hyperpolarized ¹²⁹Xe MRI)

10 y.o. male BOS patient FEV₁%-pred = 60% 129 Xe VDP = 22.3 %

Conclusions

Pulmonary MRI is feasible, practical

- UTE MRI can depict lung structural abnormalities
- Hyperpolarized-gas MRI can depict and quantify ventilation abnormalities
 - High sensitivity compared to FEV1 (even higher than LCI)

Early results in BOS, NEHI indicate structure-function MRI may be used to quantify earliest forms of disease

Potential to monitor therapeutic efficacy

Core Faculty

CPIR - People

Associated Faculty / Close Collaborators

Jason Woods. Zack Cleveland. Ph.D. Pulm. Med Ph.D., Pulm Med

John Clancy, MD Pulmonary Med

Stephanie Merhar, Paul Kingma, MD MD, Neonatology Neonatology

Chris Towe, M.D. Marc Schecter, M.D. Raouf Amin, M.D. Pulmonary Med Pulmonary Med Pulmonary Med

Kas Myers, M.D. Michael Taylor, M.D. Hem/Onc (BMT) Pulmonarv Med

Fellows

Laura Walkup, Robert Thomen,

Ph.D.

David Roach.

Ph.D.

David Spielberg,

MD

Emilia Olson, MD

Chuck Dumoulin, Jean Tkach, Ph.D., Radiology PhD: Radiology

Rob Fleck, M.D. Radiology

Alan Brody, M.D. Radiology

Graduate Students & Staff

Ph.D.

Nara Higano, Physics WU

Teckla Akinyi, CPIR & UC BME

Chamindu Gunatilaka Erin Watters, M.S. Jinbang Guo, WU, Physics UC Physics

Coordinator

Sonya Harbin. Admin Assistant

Bruce Trapnell, M.D. Frank McCormack, M.D. Pulmonology (adult)

Pulmonology (adult)

Supplemental slides

Rare-lung diseases: bronchiolitis obliterans syndrome (BOS)

Regional structure (UTE MRI) and function (¹²⁹Xe ventilation MRI) Potential applications in lung- and bone-marrow transplantation

10 y.o. post-infectious BOS: 34% FEV₁

¹²⁹Xe VDP: 40.7% Near absence of ventilation in left lung!

Predicting short-term outcomes via MRI

Respiratory support at discharge in 27 patients: 16 discharged on room air, 4 on O_2 , 4 on a ventilator, 3 died before discharge.

				•				
Term (no BPD) Discharge: Room air MRI score = 0		Mild BPD Room air MRI score = 1		Moderate BPD Oxygen MRI score = 8		Severe BF Ventilato MRI score =	2D r = 13	Severe BPD Death MRI score = 13
	Respiratory so discharge (or	upport at death)	Room air (N=16)	O ₂ (N=4)	Ventilator (N=4)	Death (N=3)		
	MRI Ochiai so	ore	1.2 ± 2.2	4.8 ± 2.1	11.5 ± 1.7	12.7 ± 0.6		

Scores correlated significantly with length of hospital stay (slope = 0.06 [score]/day, P<0.0001).

NS Higano, et al., "Early-life MRI of bronchopulmonary dysplasia predicts short-term outcomes", manuscript in preparation

HP Gas Compatible Ventilator

3D Printed Cradle

Teflon Pneumatic Valve

Pressure Transducer

Exhale

